SPM-2002, Proceedings. P. 277
Application of tools of numerical analysis to
a multiexponential approximation of data series

Trusov M.A., Volkov A.D.
NT-MDT Company, Zelenograd, Moscow, Russia

Fluorescence scanning confocal microscopes with pulsed laser sources include also modes for lifetime
measurements. Today there is equipment available that allows to get light intensity distribution along the
time scale with picosecond accuracy. Thus it’s possible to obtain the time resolved curve of descending
light intensity starting at the point of laser pulse trigger and finishing at the point where signal becomes
substantially smaller than noise. The main problem for practical measurements here is poor signal to noise
ratio. That’s why the method of curve fitting by some model should be substantially tolerant to high
frequency noise.

The major task, which we try to solve in this article, consists in description of basic methods and
approaches which can be applied to an analysis of results of measurements for extraction of such
components from the initial signal, which have an exponential time—dependence. We propose the following
mathematical pattern of the investigated process:
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where y(¢) is the initial signal, a,, , @, , and 7, are unknown parameters, and &£(¢) is a variate with zero

mathematical expectation value and small dispersion describing simultaneously the prediction error and a
possible noise. Parameters 7, are called "lifetimes". Let us note that we also suppose an existence of a non—

zero constant constituent g, in the initial signal. Because the measurement process, generally speaking, is
discrete, we know the function y(#) only in a finite set of points of time {tl. } For this reason, below we
will use, instead of y(¢) , a number sequence y, = y(¢,) . In practice, the equidistant points of time are used,
so in what follows we will choose an appropriate unit and will take ¢, =i (i.e. y, = y(i)), i=0,...,N.
Up to now we told nothing about the number of exponents ». First of all we must be sure that the
following inequality is realized:

N
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otherwise the number of unknown parameters will exceed the number of known data. The relation N >> n
is realized often, though. Let us first consider a case, when n is known and assigned beforehand. If the
constant component a, is equal to zero, then one can calculate the lifetimes 7z, using the so—called

extended Proni method [1]. Below we briefly describe this method and discuss possible improvements of it.
The main idea is to construct an equation of linear prediction for the series { v } :
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where ¢, are unknown coefficients and e; is a prediction error. The quantity p is called "linear prediction
order". To calculate the coefficients o, we apply the least square method using the singular value

decomposition [2], leaving in the corresponding expansion of the vector @ only n leading terms. As for
the order p , it must be in the interval

E> >n
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In practice, the optimal value is p ~ 5n—10n.
After calculation of the parameters «; one should solve the characteristic equation of the power p :
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and then select n required roots. Via these roots the lifetimes are calculated directly:

7,==1/InA,, i=1,...,n
The selection of the roots can be considerably simplified if one uses also the so—called "backward
prediction”. If we form a sequence z;, = y,,_, and calculate for it the coefficients of linear prediction f,,
then the equation
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will have roots which are inverse—conjugate with respect to the roots of equation (3): z, =1/ 4, . The roots

corresponding to veritable exponents will prove beyond the unit circumference while the other roots
corresponding to noise will prove inside it, because a statistics of a random process does not change with
time reversal. A comparison of complex roots of equations (3) and (4) give us a possibility to increase a
precision of a prediction and to simplify a selection of required roots.

In a general case a, # 0 we may reduce the problem to the previous one by considering, instead of { v }, a
series z, =y, — y,,,, where L is a shift along the sequence. It is obvious that for the series {z,} the

constant term will be equal to zero while the lifetimes will remain the same. As for quantity L, it should
not be too small, because in subtracting close values y, from each other the noise contribution becomes
very essential, and it should not be too large, because an effective length of the series {zi} (le. N-L)is
preferable to be as large as possible. We chose it as L ~ N/2— N /3. Finally, when we know lifetimes
7, , we can easy calculate the parameters a, using an ordinary least-square method [3].

Let us now consider the situation when the number of exponential components 7 is not known. In this case
one can use the same algorithm as above with replacement of the number » by a number »', which
certainly exceeds the number of really existing exponents, and, of course, with appropriate choice of the
order p > n'. The parameters ¢, then split into two groups according their magnitude. Those, which prove
to be quite small, correspond to false exponents, while the others correspond to true ones. With increasing
of the number #', the difference between these two groups becomes more distinct. Making formally »'

tend to infinity, we come to an idea about replacement of equation (1) by an integral relation of the
following form:

¥ =[a(@)e"dz, 5)
0

where 7 moves to a continuous variable running all positive real numbers and & moves to a continuous
function of this parameter. Then the number of maximums in the distribution a(7) and their positions will

give us a good estimation of the number of exponential components and the lifetimes. In fact, the obtained
integral transformation is nothing but the inverse Laplace transformation. Thus, we reduce our task to a
problem of numerical inversion of Laplace transformation.

Generally, to reverse the Laplace transformation, one should solve an integral equation of the first type:

[ feo)erdx=F(p), (©6)

where F(p) is a known function (image) of a complex argument, which proposed to be analytical in a
half-plane Re p >y, y <o. In solving the equation (6) we face with two main problems: necessity to
apply a rather sensitive mathematical tools and instability of the original f* with respect to image F . In

analysing different methods of inversion of Laplace transformation we came to a conclusion that the best
variant for us consists in transformation of the initial interval (0,+00) of possible values of the argument to

a finite one and subsequent orthogonal function system expansion of the original. In practice, we used two
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expansions: Jacobi polynomial expansion and Fourier sine—expansion [4]. As above, we assume that we
know the function F'(p) inpoints p =0,1,... .

In the first variant we use the function @(y) , defined as

o()=y*1-»", 0<y<l, a>-1, p>-l, (7)
where o and S are assigned before. There exists an orthonormal polynomial system O, (») on the

segment [0,1] with the following properties:

[0,01)0,Me()dy =3, (8)

These polynomials are called "shifted normalised Jacobi polynomials". In the explicit formula for the
polynomial 0, (»)

0,(0)=Ya," ©
the coefficients «,, are well-known (see, for exarr’;;le, [5]). The function f(x) can be represented as
J(x)=gle (e e, (10)
where
100 =3 5,0, (an
and "
B =2 F(k) . (12)
To realise the second variant we have to knowk‘:lie value f(0)= f,. Then we may reduce our task to the
following:
[g(xemdx=G(p) , (13)
where 0

f(x) — foe—x/Z +g(x)e—x/2 ,
fo
G(p+1/2)=F(p)———,

(p )=F(p) brl/2
and g(0)=0. An angle @ is defined as 6 = arccos(e *'*), 0< @ < /2, so the function g(x) can be
written as g(x) = ¢(€), where the function ¢(€) is determined by a Fourier series:

#(0) =D a,sin(2i +1)0 . (14)
i=0

The coefficients ¢, can be calculated from a triangular linear system:

E 2k lC”’ka ———2 4"G(n+1/2) , n=0,1,.... (15)
2n+1 R4
k=0

Thus, leaving in the expansions (11) or (14) the required number of terms, we can find the original f'(x)

with a necessary degree of accuracy. In practice, however, we saw that the first algorithm gave us more
stable and more precise solution, with appropriate choice of parameters & and £ . In conclusion, one can
say that all above—listed methods, with small improvements, give us a possibility to distinguish exponential
components and to calculate their parameters with enough degree of accuracy, which stimulates further
investigations of these algorithms, by means of both analytical and numerical tools.
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