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Fluorescence scanning confocal microscopes with pulsed laser sources include also modes for lifetime 
measurements. Today there is equipment available that allows to get light intensity distribution along the 
time scale with picosecond accuracy. Thus it’s possible to obtain the time resolved curve of descending 
light intensity starting at the point of laser pulse trigger and  finishing at the point where signal becomes 
substantially smaller than noise. The main problem for practical measurements here is poor signal to noise 
ratio. That’s why the method of curve fitting by some model should be substantially tolerant to high 
frequency noise. 
The major task, which we try to solve in this article, consists in description of basic methods and 
approaches which can be applied to an analysis of results of measurements for extraction of such 
components from the initial signal, which have an exponential time–dependence. We propose the following 
mathematical pattern of the investigated process: 

                                                                                                              (1) ∑
=

− ++=
n

i

t
i taeaty i

1
0

/ ),()( ετ

where  is the initial signal,  ,  , and  are unknown parameters, and  is a variate with zero 
mathematical expectation value and small dispersion describing simultaneously the prediction error and a 
possible noise. Parameters  are called "lifetimes". Let us note that we also suppose an existence of a non–
zero constant constituent  in the initial signal. Because the measurement process, generally speaking, is 
discrete, we know the function  only in a finite set of points of time { . For this reason, below we 
will use, instead of , a number sequence . In practice, the equidistant points of time are used, 
so in what follows we will choose an appropriate unit and will take t  (i.e. ),  . 
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Up to now we told nothing about the number of exponents . First of all we must be sure that the 
following inequality is realized: 
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otherwise the number of unknown parameters will exceed the number of known data. The relation  
is realized often, though. Let us first consider a case, when  is known and assigned beforehand. If the 
constant component  is equal to zero, then one can calculate the lifetimes  using the so–called 
extended Proni method [1]. Below we briefly describe this method and discuss possible improvements of it. 
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The main idea is to construct an equation of linear prediction for the series : { }iy
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where  are unknown coefficients and e  is a prediction error. The quantity  is called "linear prediction 
order". To calculate the coefficients  we apply the least square method using the singular value 
decomposition [2], leaving in the corresponding expansion of the vector  only  leading terms. As for 
the order , it must be in the interval 
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In practice, the optimal value is . nnp 105~ −
After calculation of the parameters  one should solve the characteristic equation of the power : iα p
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and then select  required roots. Via these roots the lifetimes are calculated directly: n
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The selection of the roots can be considerably simplified if one uses also the so–called "backward 
prediction". If we form a sequence  and calculate for it the coefficients of linear prediction , 
then the equation 
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will have roots which are inverse–conjugate with respect to the roots of equation (3): ii λµ /1=  . The roots 
corresponding to veritable exponents will prove beyond the unit circumference while the other roots 
corresponding to noise will prove inside it, because a statistics of a random process does not change with 
time reversal. A comparison of complex roots of equations (3) and (4) give us a possibility to increase a 
precision of a prediction and to simplify a selection of required roots. 
In a general case a  we may reduce the problem to the previous one by considering, instead of { , a 
series , where  is a shift along the sequence. It is obvious that for the series  the 
constant term will be equal to zero while the lifetimes will remain the same. As for quantity , it should 
not be too small, because in subtracting close values  from each other the noise contribution becomes 
very essential, and it should not be too large, because an effective length of the series {  (i.e. ) is 
preferable to be as large as possible. We chose it as . Finally, when we know lifetimes 

, we can easy calculate the parameters  using an ordinary least–square method [3]. 
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Let us now consider the situation when the number of exponential components n  is not known. In this case 
one can use the same algorithm as above with replacement of the number  by a number , which 
certainly exceeds the number of really existing exponents, and, of course, with appropriate choice of the 
order . The parameters  then split into two groups according their magnitude. Those, which prove 
to be quite small, correspond to false exponents, while the others correspond to true ones. With increasing 
of the number n , the difference between these two groups becomes more distinct. Making formally  
tend to infinity, we come to an idea about replacement of equation (1) by an integral relation of the 
following form: 
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where  moves to a continuous variable running all positive real numbers and  moves to a continuous 
function of this parameter. Then the number of maximums in the distribution  and their positions will 
give us a good estimation of the number of exponential components and the lifetimes. In fact, the obtained 
integral transformation is nothing but the inverse Laplace transformation. Thus, we reduce our task to a 
problem of numerical inversion of Laplace transformation. 
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Generally, to reverse the Laplace transformation, one should solve an integral equation of the first type: 
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where  is a known function (image) of a complex argument, which proposed to be analytical in a 
half–plane , . In solving the equation (6) we face with two main problems: necessity to 
apply a rather sensitive mathematical tools and instability of the original  with respect to image . In 
analysing different methods of inversion of Laplace transformation we came to a conclusion that the best 
variant for us consists in transformation of the initial interval (  of possible values of the argument to 
a finite one and subsequent orthogonal function system expansion of the original. In practice, we used two 
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expansions: Jacobi polynomial expansion and Fourier sine–expansion [4]. As above, we assume that we 
know the function  in points  . )( pF
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In the first variant we use the function , defined as 
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where  and  are assigned before. There exists an orthonormal polynomial system Q  on the 
segment [  with the following properties: 
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These polynomials are called "shifted normalised Jacobi polynomials". In the explicit formula for the 
polynomial  (yQn
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the coefficients  are well–known (see, for example, [5]). The function  can be represented as α )(xf
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To realise the second variant we have to know the value . Then we may reduce our task to the 
following: 
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and . An angle  is defined as , , so the function  can be 
written as , where the function  is determined by a Fourier series: 
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The coefficients  can be calculated from a triangular linear system: α
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Thus, leaving in the expansions (11) or (14) the required number of terms, we can find the original  
with a necessary degree of accuracy. In practice, however, we saw that the first algorithm gave us more 
stable and more precise solution, with appropriate choice of parameters  and . In conclusion, one can 
say that all above–listed methods, with small improvements, give us a possibility to distinguish exponential 
components and to calculate their parameters with enough degree of accuracy, which stimulates further 
investigations of these algorithms, by means of both analytical and numerical tools. 
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